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CALCULATION OF THE SPATIAL DIFFUSION 
OF SMALL PARTICLES IN AN EXPONENTIAL ATMOSPHERE 

by Milton M. Klein, Kwang Yu, and Richard H. Harrison 

1.  Introduction 

The problem of general diffusive motion of small particles through 

an atmosphere of variable density has been treated recently by several 

investigators.  A numerical solution for the case of an exponential 

atmosphere has been made by Banister and Davis .  An analytic solution 

2 
motivated by their results,has been obtained by Granzow  in the form of 

an infinite series of Laguerre polynomials.  In one analysis of the F„ 

layer of the ionosphere as a charged system in which diffusion occurs in 

3 
the arabipolar limit, Yonezawa has obtained a solution which may be 

applied to neutral particles whose mass is half that of the ambient 

particles.  These analyses have been limited to the case of one-dimen- 

sional motion.  Recently Klein and Yu have obtained analytic solutions 

for both three-dimensional and one-dimensional motion in atmospheres 

having exponential and parabolic density distributions.  The numerical 

work was confined to the one-dimensional problem for the exponential 

atmosphere.  An extension of the calculation to the three-dimensional 

problem is presented here for the exponential atmosphere. 
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2.  Analysis 

The diffusion of small particles in an atmosphere whose density 

varied exponentially with altitude z was studied in detail in Reference 

4.  The diffusion coefficient D was taken in the form 

D z/H 
(1) 

where Do is a reference value of D at z = 0, and H is the scale height, 

An analytic solution for the three-dimensional density distribution 

n(r,t)  was obtained in the form 

•i(r''.t')   x 1 ,.1-a   .1+a 

8nH3t'     ^ 
exp t+t 

t' / '^K Rl* 
(.•) 

where n    is   the   total  number of particles   ' « e'Z^2H     r    ■ e"zo/2H 

2 2 2 7 
a    -  (x  -  x')     +  (y'- y')   ,   x*     y'     z',   is   the  point  of  release,   ß^ " 

o o o       o       o 
2 2 

P    +  (a-1)   ,   and a   is   the  ratio of  the mass  of a  foreign particle  to 

that  of an ambient   particle.     In  Equation   (2)   the unit  of  length   Is H 

while   the   time   t'   Is measured   In units of H  /D    (dlmenslonless  values 
o 

of r and   t are  primed). 

Numerical  calculation of  the  density n requires  the  evaluation of 

the definite   Integral 

o 
CO   J^jpdp (3) 

2^ 



bi 

occurring in Equation (2).  Because of the unusual re 

gration of a Bessel function with respect to a varia 

upon the order of the Bessel function, an exact dete 

Integral N does not appear possible.  An approximate 

for the late times may, however,be obtained.  For la cge 

parameter X « I and IÖ(X) may be expanded in a power 
: 

InU) " 

x.ß ß+2 

tüL + ßw r(ß+i)   r(ß+2) 

and, upon retention of the first two terms, Equation 

no 

^2) ß + L +{-2 -/ 

The solution of Equation (3) therefore depends upon 

function : (;-»+2) in a suitable form.  The fact that f 

asymptotic form of the gamma function is 

.,. ,    -^ Jx log x ! -x 
(x) ~ x  e      / 

suggests that a suitable form for. r(ß+2) that yield^ a tractable integral 

which  is  reasonably accurate is 

•(ß+2)   -  c  ß e 
b; 

quirement of  inte- 

e which depends 

ination of  the 

analytic  solution 

values  of  t   the 

series 

•   • (4) 

(3)  becomes. 

. \ 
jmpdp .(5) 

Expressing  the  gamma 

or  large  x  the 

(6) 

(7) 

where c and b are constants which can be evaluated by matching Equation 

(7) to the exact garana function at two suitable points.  Equation (7) 

is most accurate at large ß, i.e., for large a, but riends to give too 

large values near a « 1.  Utilization of the integral 



•■ 

/ 

■bß 

T Jo [f)p  Pdp 
Vb2 + J

2/4 
(8) 

where Q - a-l  yields  for  the   Integral  N 

where 

»VT 

Il + I2 

h    "    — 

!       .     (A-H>)e- .VT 

H 
R2    =    (A+b)2 + a2/4 

(9) 

(10a) 

(10b) 

(I0c) 

a-l 
The   integral  N  therefore exhibits an exponential  behaviour c   ; 2   r   for 

large a. 

For the case a-l, where ß ■ p, the exponential vanishes and the 

integral may be represented as follows: 

1 +Z  [h + (l+c) ^ +c ^   (ll) 

X -t- b 
1    R3/2 

j  „ 2\(A*b)2  - 3a2/4 
.5/2 

(12a) 

(12b) 

I  .  3 (A-fb)l2 (A4b)2 - 3^/4] 
3 „7/2 (l^c 



3.  Results and Discussion 

Some typical results obtained from this Investigation are presented 

In Figures 1 through 9.  In Figures 1 through J we have plotted the 

relative density n/n   (n   ■ n at a ■ 0) as a function of a  for 
max  max 

several typical values of a at 600, 400, and 150 km.  In all cases we 

note, as anticipated, that the heavier particles exhibit a more rapid 

drop-off in density, regardless of the altitude, than do the lighter 

particles.  It should not be Inferred, however, that the absolute density 

at a particular location for a heavy particle is always below that for a 

light one. 

Absolute density contours in the z - j plane for a = 1, 2, 5 and 10 

are represented in Figures 4 through 9 at time t' - lo"4.  We note that 

as the altitude becomes lower the densities for the heavier particles 

(a - 5, for Instance) are greater than those for the light particles 

(a ■ 1, for example).  A comparison of the a ■ 1 and a ■ 5 contours 

(Figures 3 and 7) Indicates the very rapid spreading out of the lighter 

particles and the extremely small dispersion for the heavier particles. 

These figures indicate that the lighter the particles the greater is 

their horizontal spread, as one would expect.  In the case a ■= 3, we 

have also Included results for t' - 10  and t' ■ 10  . 

2 A 
Taking Do ~ 400 cm /sec and H ~ 20 km, t' « 10* corresponds to 

' 10 sec  ~ 12 days.  Assuming n « 10  particles and z ■ 400 km, 
o o 

-4 
we have at   t*   -  10 the  following  table: 



\ 

d 

Approximate altitude 
of peak density at 

j = 0 

Ha (in km) 

200 400 600 ICUO 2000 

1 190 km 4xl017/cc 10l7/cc 
16 

3x10 /cc 2xlOl5/cc 7xlOl3/cc 

2 170 km 5xl017 
5xl015 3xl013 8 

7x10 
less than 

l/cc 

5 150 km 5xl016 108 l/cc - • ... 

U) 140 km ~io15 -104 
less than 

l/cc ... . . . 

The values obtained from the approximations described in Section 2 

have been checked at several points by direct numerical integration of 

the integral N using an IBM 1620 computer for a ■ 1, 2, 5 and 10. The 

agreement of the two has been found to be satisfactory. 

/ 
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